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Abstract  

Gravitation is considered as a gauge field within the formalism of Utiyama and Kibble. 
In empty space-time a Lagrangian density, quadratic in Riemann's curvature tensor and 
in Cartan's torsion tensor, is introduced. The equations of motion are coupled differen- 
tial equations for the curvature and torsion tensors. The spin of the torsion field behaves 
as a curvature source and the energy of both fields acts as a torsion source. Each field 
has an energy tensor, similar to the Maxwell tensor of electrodynamics, vanishing in a 
torsionless space. It thus appears that the torsion of space-time is a geometric property 
that makes possible the propagation of gravitational energy in the absence of matter. 

1. Introduction 

Etec t rodynamics  has always been  considered as the ideal mode l  o f  a field 
theory .  It describes the  energy f low in emp ty  space by means o f  Maxwel l ' s  
tensor,  which  is a quadra t ic  expression in the  electr ic  and magnet ic  fields. 
As is well  known,  tfiis t ensor  is canonical ly  obta ined  f rom the  free electro-  
magnet ic  Lagrangian densi ty  

~ e m  = -¼FuvF  uv (1.1) 

which is also quadrat ic  in the  fields. 
Einstein 's  gravitat ional theory  may,  in turn ,  be derived f rom Palatini 's 

Lagrangian 

~q~g = ( - g ) ' / 2 R  (1.2) 

The  analog o f  F uv in this approach  is Chris toffel ' s  connec t ion  I 'Xuv. In 

1 A summary of this work was presented to the first "Marcel Grossmann'" meeting on 
the recent progress of the fundamentals of general relativity (Trieste, July 1975). 
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fact, Lagrangian (1.2) is equivalent, up to a four-divergence, to the following 
quadratic expression in P xuv: 

.~*g = (--g) l/2 g#V (Pa~ ~P ~o~ -- F ~ P ~ )  (1.3) 

The standard procedure gives, from this Lagrangian, the following pseudotensor 
(Weber, 1971, p. 73): 

= ( _ g ) - , , 2  [ ,g8 _ (1 .4)  

which represents the potential energy of a test mass in a gravitational field 
(Eddington, 1924, p. 135). It is associated to the forces that cause the ordinary 
(noncovariant) acceleration of the particle. This interpretation amounts to 
establish a parallelism between the Lorentz equation governing the motion of 
a charged particle immersed in an electromagnetic field, and the geodesic 
equation in general relativity. Although this analogy discloses the similarity 
of the motion of charges and masses, it fails to unveil the dynamic structure 
of the gravitational field. The very meaning of the geodesic concept is to con- 
ceive the motion of a test mass as purely inertial, i.e., with a zero covafiant 
acceleration. The gravitational field exhibits its dynamical content by means 
of the tidal forces, which are the origin of the relative acceleration of two free 
neighboring masses. This is clearly expressed by the equation of geodesic 
deviation 

D 2 n~/Dr 2 + R ~ , ~  (dx~/dr)'q~(dx~/dr) = 0 (1.5) 

which is the proper physical analog of the Lorentz equation of electromag- 
netism. Therefore the gravitational field is better characterized by Riemann's 
curvature tensor than by Christoffd's connexion. 

This correspondence between the electromagnetic field tensor F **v and the 
curvature tensor RUvpa appears in a natural way in the context of gauge field 
theories. As was shown by Weyl (1931, p. 89), the electromagnetic field com- 
pensates the noninvariance of a charged particle Lagrangian under local (coordi- 
nate dependent) phase transformations. In the same fashion, the gravitational 
field emerges as the compensating field associated to local Lorentz transfor- 
mations (Weyl, 1929; Utiyama, 1956). 

When this invariance is extended to the full t 0-parameter group of  inhomo- 
geneous Lorentz transformations (Poincar~ group), in addition to Riemann's 
tensor, the gauge field is also constituted by Cartan's torsion tensor CUvp 
(Kibble, 1961). 

According to the general theory of gauge fields, the free gravitational 
gagrangian must be a function only of the potentials and the tensor fields. 
By analogy with electrodynamics it should be a quadratic function in the 
curvature and torsion. Lagrangians quadratic in Riemann's tensor have been 
introduced by several authors (Pauli, 1919; Lanczos, 1938; Carmelti, 1972). 
They essentially reproduce Einstein's equation in empty space-time. However, 
as we show in Section 5, the proper analog of Maxwelt's energy tensor in this 
approach, equation (5.4), vanishes in the absence of matter. Hayashi (1968) 
considered a Lagrangian qfladratic in Riemann's and Cartan's tensors, but 



GRAVITATIONAL ENERGY 169 

he imposed certain subsidiary conditions that allowed him to recover Einstein's 
equation of gravitation. 

In this paper we adopt a free gravitational Lagrangian, quadratic both in 
Riemann's and Cartan's tensors. It leads to first-order coupled differential 
equations for R Uvpa and CUvp, each field acting as a source of the other. This 
relation resembles the coupling between the electric and magnetic fields in an 
electromagnetic wave. The curvature-field energy is still given by equation 
(5.4) and a similar expression accounts for the torsion-field energy Tc uv 
[equation (5.5)]. However, in the presence of torsion, the tensor T R**v is 
no longer zero and the same is true for the homologous term Tcuv.  

We conclude that only spaces with torsion possess dynamical gravitational 
energy and that this energy is shared by the torsion and curvature fields. 

The plan of  this paper is the following: In Section 2 we shortly review the 
basic ideas of Kibble's paper and introduce the notation. In Section 3 we 
identify, with the help of Noether's theorem, the energy and spin of the 
sources, including the contribution of the gravitational field. In Section 4 
we introduce the free gravitational Lagrangian and derive the corresponding 
equations of motion. Finally, in Section 5, we rewrite these equations in a 
full covariant language and show that the tensors TR **v and Tc ~v correspond 
to the gravitational energy of the dynamical fields. 

2. Gauge Approach to Gravitation 

Let us consider, following Kibble (1961), a Lagrangian density f ( X ,  OuX) 
representing all fields besides gravitation. Special relativity demands its 
invariance under the ten-parameter Poincar6 transformations 

ax*' = e G x  ~ + e" (2.1) 

5x(x) = l e ~ S . ~ x ( x )  

where e uv = - e  uu. The matrices Suu satisfy 

Suv = -Suu 

(2.2) 

(2.3) 

[Su~, Soo ] = ~pS.o + r~uoSvp - r~oS**p - ~upS~o (2.4) 

with rh, v = diag (1, - 1 ,  - 1 ,  -1) .  These commutation relations characterize the 
Lie algebra of the Lorentz group. According to the locality condition of Yang 
and Mills (1954), the physical system must also be invariant when the ten 
parameters e uv and e u are replaced by ten arbitrary functions of the space-time 
coordinates, i.e., 

~x u = e~v (xW + e"(x)  

~×(x) = ½ e ' ( x ) S , x ( x )  (2.5) 
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Here both Latin and Greek indices run from 0 to 3. Two kinds of indices are 
needed to account for the fact that now the pure internal transformations 
are a subgroup of the extended Poincar6 group, namely, 

eG(x)  ~ O, ~x*' - O, 8x(x) ~ 0 

It should be noted that the requirement of invariance under the generalized 
Poincar~ transformations corresponds to the equivalance principle of Einstein's 
gravitational theory (local validity of special relativity). 

The original Lagrangian density ~ ( X ,  3~X)  is no longer invariant under the 
extended Poincar6 transformations (2.5), because the derivative X,u transforms 
as 

fiX,# = ½etTSijx,g + !2el/,# S i jX  - ~u,laX,u (2.6) 

The invariance is recovered when we perform the customary "minimal" re- 
placement of the ordinary derivative by a covariant one: 

X;k = hkU(X,u  + 1 A i ] p s q x )  (2.7) 

In this expression ten vector gauge fields have been introduced to compensate 
the non invariance of the kinetic energy terms. They are the six antisymmetric 
A q ( x ) ,  associated to the internal Lorentz transformations el i (x) ,  and the four 
hkU(x ) ,  originated on the displacements eU(x) .  The transformation properties 
of these fields are 

BAli#  = eilcAkJ~, + ei k A i k  u -- ~U,#AiJ v - eiJ,# (2.8) 

6 h k  # = ~U,vhtc u - e ikhi  u (2.9) 

whence the covariant derivative transforms according to 

8X;x = ½ei/s i /x;x  i - -  e k X ; i  (2.10) 

from which the invariance of the Lagrangian density is guaranteed. 
The commutator of the mixed second covariant derivatives yields 

where 

X ;kl -- X ;lk = ½RiJk lS i ix  - C ik lX  ;i (2.11) 

Ri j k z  = hkUhzV(Ai iu , .  - A~.,** - A ik**Ak/v  + A i k v A k j u  ) (2.12) 

Cikl = ( h k U h f  _ htUhkU) (bi#,u + Airubr#) (2.13) 

In equation (2.13) we have introduced the four quantities bZ. defined by 

biuhi  u = 6U u 
(2.14) 

b 'uh j  v = 8l/  

that is to say, biu is the inverse of hi ~. 
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To understand the physical meaning of these formulas let us consider the 
well-known similar relations describing the minimal electromagnetic inter- 
action of a charged scalar field q~(x): 

c~;u = O,u - ieAu (2.15) 

~;uv - O;vu = eFuv (2.16) 

Comparing equations (2.15) and (2.16) with the homologous equations (2.7) 
and (2.11), we convince ourselves that the gravitational field is characterized 
by two local tensors R~lk/and cikz. The geometrical content of these tensors 
is made clear when we interpret the four fields hkU(x) as the contravariant 
components of a vierbein system in a curved space. Correspondingly, the 
inverses b~u(x) are the covariant components of the same tetrad. This identi- 
fication provides the space-time with a metric given by the symmetric funda- 
mental tensor 

guy = bkubkv (2.17) 

Thus, the Greek indices, which refer to global components, are raised and 
lowered with the help of guy, whereas the Latin ones are handled with the 
local Minkowski tensor T/k- 

In addition to the metric, an affine connexion PXuv, consistent with 
the structure of the covariant derivative (2.7), may also be introduced, 
namely, 

x i P;~Uv = hi (b ta,v + Aikvbkg)  (2.18) 

Although the metric tensor (2.17) has a vanishing covariant derivative, expres- 
sion (2.18) is not a Christoffel connection, because it is not symmetric. Accord- 
ing to this geometric interpretation, the quantities Riikt and Ctkl are identi- 
fied as the local components of the curvature and torsion tensors. The corre- 
sponding world tensors are 

RPo#v = FPa#,v - ['Pav,u - FP;~UI'Xov + PP;~v['xota (2.19) 

C~'.v = pxuv  - FXvu (2.20) 

Therefore, when we impose invariance of a given field with respect to indepen- 
dent Poincar4 transformations at each space-time point, two gauge fields are 
needed. They have the geometric meaning of curvature and torsion of a non- 
Riemannian space. Together they represent the gravitational field. 

3. Sources o f  the Gravitational FieM 

In this section we make a general analysis of the field equations and their 
sources, in order to identify the conserved currents that give rise to the curva- 
ture and torsion fields. We start from an arbitrary Lagrangian density 

~qa{;(, OuX, hk u, 3 v h f  , Ai] u, OvAiJ u } (3.1) 
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assl~med invariant under the extended Poincar6 transformations (2.5). Direct 
application of Noether's theorem gives 

8u ( [Se5 % - (~ ~l~x,~,)×,~ - 0 f l ahk p ,u ) hk p ,~, - 0 f lOA ijp ,# )A ij p ,v ] ~XV 

+ (3~'/OX,u)rX + (3 f /OhkP , . ) rh~  p + ( O ~ / 3 A i J p , . ) r A i j p }  = 0 

(3.2) 

where, for short, we have replaced inside the brackets the partial derivative 
symbol by a comma. Inserting in equation (3.2) the expressions for the 
variations given by equations (2.5), (2.8), and (2.9) and taking into account 
that ~v, ap~v, ~ 0 ~ v ,  dj, ~.eu, and ~ g J  should be considered as inde- 
pendent arbitrary functions antisymmetric in ij and symmetric in a/3, we 
obtain 

OoFij "p = SVij (3.3) 

Fil ~ = - F i p  c~ (3.4) 

~uS"ij = 0 (3.5) 

~.GUPv = - TPv + ~.(FijP"AiJv) (3.6) 

GC~v + G&~v = (Fiff ~ - Fijt~)AiJv (3.7) 

~uTUv = 0 (3.8) 

where we have defined 

Fij "° =. a..~ / ~ A i ] . , p  (3.9) 

S .  ij ~ (O ( ~ / ~ X , . ) ½ S i j x  _ 1 [(a..o~/~hjp , . ) h i p  _ (O~O/ahil9 ,.)hjp ] 
+ L 2 [(O..(~/aAikp , . )Ajkp -- (Of.g~/OAJkp,u)Aik p ] 

+ ½ [(O.LP/OA kip,.)Akjo -- (O~]OAkJp,v)A kip ] (3.1 O) 

G°¢ v - (O ~/Oh~V,c~)hk ~ (3.11) 

TUv - ~  ruv - (O.~/OX,u)X,v - (O~/ahkP,u)hkP,v - (Of--.P/OAiip,u)AiJp,v 

(3.12) 

There are two gauge fields Fi] "p and G~v ,  whose field equations are (3.3) 
and (3.6). Noether's current SUq is the conserved quantity associated to the 
invariance of the Lagrangian density under rotations of the vierbein, i.e., the 
intrinsic spin. Analogously T"v is the conserved current originated on the 
displacements of the vierbein origin; it thus corresponds to the energy tensor. 
The current SUg] creates the field Frm', whereas the canonical energy tensor 
TUv is only..part of the source of the field G~v ;  the remaining term, 
O,(Fi]PUAUv), has the form of the divergence of an antisyrmnetric quantity. 
Therefore, the expression 

T*Pv - T°v  - O.(FiiPUAiiv) (3.13) 



G R A V I T A T I O N A L  E N E R G Y  I73 

is the canonical energy tensor when a total divergence is added to the Lag. 
rangian. It satisfies the equation 

~pT*Pv = OoTPv = 0 (3.14) 

because the divergence of the second term vanishes identically. This result is 
consistent with equations (3.4) and (3.7) that imply 

G ~  v = - G~C~ v (3.15) 

whence, by virtue of equation (3.6), equation (3.14) obtains. 
In the next section, using a quadratic Lagrangian density, we identify the 

fields Fij up and Ge¢v with the curvature and torsion of space-time. 

4. Free Gravitational Lagrangian 

From the general theory of gauge fields (Utiyama, 1956), we know that 
the free Lagrangian density associated to the extended Poincar~ invariance 
(2.5) contains the derivatiyes AiJu,v and hkU,v only through the covariant 
combinations Ri]kl and C~kt. The close analogy between formulas (2.11) and 
(2.t6) suggests us that this free Lagrangian should be a quadratic expression in 
both tensors. This is not the simplest gauge invariant Lagrangian, however. In 
fact, with the curvature scalar R we can build the following Lagrangian den- 
sity, linear in the derivatives Aqu,v: 

~,%fg = (det hkU)-lRiJij (4.1) 

When this expression is written in covariant language and use is made of 
equations (2.17) and (2.18) it reduces to Palatini's Lagrangian (t .2). The corre- 
sponding equations of motion are given by 

Rij - R ik j k  = 0 (4.2) 

Cki] = 0 (4.3) 

The first is Einstein's gravity equation and the second one expresses the 
absence of torsion in empty space. Note that both equations are algebraic in 
the gauge fields. The fact that we do not obtain differential equations in the 
curvature and torsion tensors is a serious objection against Lagrangian (4.1) 
in this gauge approach. As pointed out in the Introduction, Palatini's 
Lagrangian is essentially a quadratic form when the gravitational field is iden- 
tified with Christoffel's connexion Fxuv. 

In the light of the previous discussion, we propose to adopt as the free 
gravitational Lagrangian, the quadratic scalar density 

~g  = ~o90 R + ~4' c = (¼)(det hk~)  -1 x [Ri/klR jm + C~kC] k] (4.4) 

where ~oq~R and 5q c stand for the terms quadratic in Riemann's and Cartan's 
tensors, respectively. From this Lagrangian we can derive explicit expressions 
for the gauge fields introduced in Section 3. Writing h for det hk u, we obtain 

(Fg)ij uv =- (a ~'g/a.4ei.,~) = h -1R~j"~ (4.5) 
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(Gg)~(3~, z (3 c~g/3hkU,o~)hk ~ = h-1Cua~ (4.6) 

Therefore, the gauge fields/~) and Gg (associated to the potentials AiJ u and 
hk v) are identified, up to the factor h - I ,  with the curvature Rij uv and the 
torsion Cv c~. 

Note that for Palatini's Lagrangian (4.1), the corresponding gauge fields are 

(Fg)ij l~u = h -1 (hil~h]~, _ hi~,hjtZ) 

Inserting now equations (4.5) and (4.6) into equations (3.10) and (3.13) 
and making use of the equations of motion derived from equations (4.4), we 
determine the values of the intrinsic spin and energy densities, which are given 
by 

(Sg)# ii =~ (~C)# ij + ({TR)#ij (4.7) 

(Tg*)Pv =-(TR)Pv + (Tc)Pv + (tc)Pv (4.8) 

with 

(ZC)I'ti] =,7=. ~ ~ c / a a i f g  = ½h -1 [C/j  # - Cji  # ] ( 4 . 9 )  

(OR)#ij =- "~ ~R/aAi j l z  = h -1 (AiapRjauo _ AjapRiagP ) (4.10) 

(TRjav = (O~q~R/Ohke)hkO =h-l~(Rij#oRiJ#v 1 p i jkl - ~6 vR jktR i ) (4.11) 

(Tc)• + ( tc )% - (02gc/OhkV)hk p + ( ~ f  c/OhkV,u )hkP,u (4.12) 

(re)Or = h-1 (CijP Cq _ 18PvcijkciJk ) (4.13) 

(tcY°v = CueP(bkvhkU,e - AUve) (4.14) 

The intrinsic spin of the gravitational field (4.7) naturally decomposes into a 
tensor part (4.9), given by the spin of the torsion field, and a pseudotensor 
(4.10), which corresponds to the spin of the curvature field. The intrinsic 
energy (4.8) splits into three terms: a tensor part (4.1 t),  given by the energy 
of the curvature field; another tensor (4.t3), and a pseudotensor (4.14), which 
correspond to the energy of the torsion field. 

We are now in a position to write the equations of motion. From the 
Lagrangian density (4.4) and taking into account equations (3.3) and (3.6) 
we obtain 

Ov(h-l Ri /"v)  + h-IA/avRi  auv - h-1AiauR/auv = (Zc)'Ui/ (4.15) 
Ov(h-l Ca uv) - CveU(bkahkV,e - AZ'ae) =(TR)U~ + (Tc)Ua (4.16) 

We have relegated the pseudotensors to the left-hand side of these equations, 
because their role consists in changing the ordinary divergence into a covari- 
ant one. 
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5. Covariant Equations and Gravitational Energy 

The equations of  motion (4.15) and (4.16) for the curvature and torsion 
fields may be cast in covariant language with the help of equations (2.17) and 
(2.18). The determinant h is easily seen to be equal to (_g)- l /2  with g = 
det(guv). A straightforward calculation then yields 

;v--2"~ ¢v'" --½C%v R~"~ =(~c) "~ (5.1)  

C#UV;v - ½C'evC ~e~' - ½C~'evC ;~ue = (TR)~U + (Tc)~u (5.2) 

On the left-hand side of these equations, the presence of torsion introduces 
two additional terms, which are characteristic of the divergence of an anti- 
symmetric tensor density calculated with a nonsymmetric connexion. In fact, 
i f J #  v = _~u¢v# is an antisymmetric tensor density, i.e., if it transforms like 
(-g)l/2AUV, where A uv is an antisymmetric tensor, then its divergence is given 
by 

UP d c ~  a v d  #v = J ;v - ½CUev  -½CVev d ue (5.3) 

This formula generalizes for non-Riemannian spaces the well-known tensor 
structure of the ordinary divergence of an antisymmetric second-order tensor 
density. 

The new feature we note here at once is the presence of torsion in empty 
space. Its source is the sum of the energy tensors of the curvature and torsion 
fields. In covariant notation they become 

(Tc )  ¢# = C~n#Ct nu - ¼g~UC~n,rC~ n'r (5.5) 

Note the similarity between these expressions with Maxwell's energy tensor of 
electrodynamics. They are quadratic in the fields, symmetric, and traceless. On 
the other hand, the source of the curvature field is the torsion spin, which is 
given by 

( ~ c ) . ~  - ½ ( c ~ .  - c ~ . )  (5.6) 

In the particular case when no torsion is present, the field equations (5.1) 
and (5.2) reduce to 

R~3Uv;v = 0 (5.7) 

( r E ) ~  = 0 (5.8) 

Equation (5.7) is equivalent to the once contracted Bianchi identities, com- 
bined with Einstein's equation R uv = 0 (L6pez, 1973), and equation (5.8) 
is a well-known property of the curvature tensor in an empty (R uv = 0) 
Pdemannian space-time (Lanczos, 1938). Therefore, in Pdemannian spaces 
the dynamical gravitational energy vanishes. This implies that a gravitational 
wave is characterized by besides the curvature, the torsion of space-time. 
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