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Abstract

Gravitation is considered as a gauge field within the formalism of Utiyama and Kibble.
In empty space-time a Lagrangian density, quadratic in Riemann’s curvature tensor and
in Cartan’s torsion tensor, is introduced. The equations of motion are coupled differen-
tial equations for the curvature and torsion tensors. The spin of the torsion field behaves
as a curvature source and the energy of both fields acts as a torsion source. Each field
has an energy tensor, similar to the Maxwell tensor of electrodynamics, vanishing in a
torsionless space. It thus appears that the torsion of space-time is a geometric property
that makes possible the propagation of gravitational energy in the absence of matter.

1. Introduction

Electrodynamics has always been considered as the ideal model of a field
theory. It describes the energy flow in empty space by means of Maxwell’s
tensor, which is a quadratic expression in the electric and magnetic fields.
As is well known, this tensor is canonically obtained from the free electro-
magnetic Lagrangian density

Lem = ‘%FMVF“V (1.1

which is also quadratic in the fields.
Finstein’s gravitational theory may, in turn, be derived from Palatini’s
Lagrangian

— 1/2
Ly =(-£)'""R (1.2)
The analog of F*¥ in this approach is Christoffel’s connection I'* up- 10
1 A summary of this work was presented to the first “Marcel Grossmann” meeting on
the recent progress of the fundamentals of general relativity (Trieste, July 1975).
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fact, Lagrangian (1.2) is equivalent, up to a four-divergence, to the following
quadratic expression in I'*

g*g = (_g)l/zguv(rauﬁr‘ﬁva - Fauvpﬂaﬂ) (1.3)

The standard procedure gives, from this Lagrangian, the following pseudotensor
(Weber, 1971, p. 73):

1,0 =(—g) 2L 8,0 — 8PP (0L %y [3,°° )] (1.4)

which represents the potential energy of a test mass in a gravitational field
(Eddington, 1924, p. 135). It is associated to the forces that cause the ordinary
(noncovariant) acceleration of the particle. This interpretation amounts to
establish a parallelism between the Lorentz equation governing the motion of
a charged particle immersed in an electromagnetic field, and the geodesic
equation in general relativity. Although this analogy discloses the similarity
of the motion of charges and masses, it fails to unveil the dynamic structure
of the gravitational field. The very meaning of the geodesic concept is to con-
ceive the motion of a test mass as purely inertial, i.e., with a zero covariant
acceleration. The gravitational field exhibits its dynamical content by means
of the tidal forces, which are the origin of the relative acceleration of two free
neighboring masses. This is clearly expressed by the equation of geodesic
deviation

D*n®*/D7% + R g5 (dxP/d7yn¥(dx® [d7) = 0 (1.5)

which is the proper physical analog of the Lorentz equation of electromag-
netism. Therefore the gravitational field is better characterized by Riemann’s
curvature tensor than by Christoffel’s connexion.

This correspondence between the electromagnetic field tensor F“” and the
curvature tensor R*, ,; appears in a natural way in the context of gauge field
theories. As was shown by Weyl (1931, p. 89), the electromagnetic field com-
pensates the noninvariance of a charged particle Lagrangian under local (coordi-
nate dependent) phase transformations. In the same fashion, the gravitational
field emerges as the compensating field associated to local Lorentz transfor-
mations (Weyl, 1929; Utiyama, 1956).

When this invariance is extended to the full 10-parameter group of inhomo-
geneous Lorentz transformations (Poincaré group), in addition to Riemann’s
tensor, the gauge field is also constituted by Cartan’s torsion tensor C¥,
(Kibble, 1961).

According to the general theory of gauge fields, the free gravitational
Lagrangian must be a function only of the potentials and the tensor fields.

By analogy with electrodynamics it should be a quadratic function in the
curvature and torsion. Lagrangians quadratic in Riemann’s tensor have been
introduced by several authors (Pauli, 1919; Lanczos, 1938; Carmelli, 1972).
They essentially reproduce Einstein’s equation in empty space-time. However,
as we show in Section 5, the proper analog of Maxwell’s energy tensor in this
approach, equation (5.4), vanishes in the absence of matter, Hayashi {1968)
considered a Lagrangian quadratic in Riemann’s and Cartan’s tensors, but
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he imposed certain subsidiary conditions that allowed him to recover Einstein’s
equation of gravitation.

In this paper we adopt a free gravitational Lagrangian, quadratic both in
Riemann’s and Cartan’s tensors. It leads to first-order coupled differential
equations for R *vpo and C",p, each field acting as a source of the other. This
relation resembles the coupling between the electric and magnetic fields in an
electromagnetic wave. The curvature-field energy is still given by equation
(5.4) and a similar expression accounts for the torsion-field energy To“”
[equation (5.5)] . However, in the presence of torsion, the tensor T *? is
no longer zero and the same is true for the homologous term T*”.

We conclude that only spaces with torsion possess dynamical gravitational
energy and that this energy is shared by the torsion and curvature fields.

The plan of this paper is the following: In Section 2 we shortly review the
basic ideas of Kibble’s paper and introduce the notation. In Section 3 we
identify, with the help of Noether’s theorem, the energy and spin of the
sources, including the contribution of the gravitational field. In Section 4
we introduce the free gravitational Lagrangian and derive the corresponding
equations of motion. Finally, in Section 5, we rewrite these equations in a
full covariant language and show that the tensors Tp*” and T*? correspond
to the gravitational energy of the dynamical fields.

2. Gauge Approach to Gravitation

Let us consider, following Kibble (1961), a Lagrangian density £ (x, 9,X)
representing all fields besides gravitation. Special relativity demands its
invariance under the ten-parameter Poincaré transformations

SxH = et x¥ + ¢t 2.1

Sx(x) = 7€ Suyx(x) (2.2)

where e = —¢”¥. The matrices Sy, satisfy
Suv = —Sup (2.3)
[S,uv: Spo] = NpoSue t MuoSvp — nvaSup - nppsvo 24)

with 1, = diag (1, —1, -1, —1). These commutation relations characterize the
Lie algebra of the Lorentz group. According to the locality condition of Yang
and Mills (1954), the physical system must also be invariant when the ten
parameters €*” and €” are replaced by ten arbitrary functions of the space-time
coordinates, i.e.,

SxH = e'r(x)x” + e#(x)

Sx(x) = $€7(x)S;x(x) (2.5)
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Here both Latin and Greek indices run from O to 3. Two kinds of indices are
needed to account for the fact that now the pure internal transformations
are a subgroup of the extended Poincaré group, namely,

) #0,  x*=0, Sx(x)#O0

It should be noted that the requirement of invariance under the generalized
Poincaré transformations corresponds to the equivalance principle of Einstein’s
gravitational theory (local validity of special relativity).

The original Lagrangian density £ (x, 8,.X) is no longer invariant under the
extended Poincaré transformations (2.5), because the derivative x ,, transforms
as

5X,u 2e]Sz]Xu 26 uSz]X E,MXV (2.6)

The invariance is recovered when we perform the customary “minimal” re-
placement of the ordinary derivative by a covariant one:

Xk = I O + 347 uS3%) @7

In this expression ten vector gauge fields have been introduced to compensate
the non invariance of the kinetic energy terms. They are the six antisymmetric
AY(x), associated to the internal Lorentz transformations e’(x), and the four
A *(x), originated on the displacements €”(x). The transformation properties

of these fields are

SAT, =AM + A, gAY, (2.8)
Bhk# = é“,yhkv — Gikhiﬂ (29)

whence the covariant derivative transforms according to
5X e = 318X e — € X (2.10)

from which the invariance of the Lagrangian density is guaranteed.
The commutator of the mixed second covariant derivatives yields

Xset = Xt = 3R e1Sipx — Claxi (2.11)
where
Rl = (A — Al — AguA¥jy + AL A;0) (2.12)
Chia=n — ' h”) (B + AT ) (2.13)
In equation (2.13) we have introduced the four quantities 4’, defined by
by =80
o f (2.14)
i —
b'uhj” =8

that is to say, b’ is the inverse of i;*.
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To understand the physical meaning of these formulas let us consider the
well-known similar relations describing the minimal electromagnetic inter-
action of a charged scalar field ¢(x):

=0 —iedy (2.15)
Doy — bypu = €F (2.16)

Comparing equations (2.15) and (2.16) with the homologous equations (2.7)
and (2.11), we convince ourselves that the gravitational field is characterized
by two local tensors R¥y; and C;. The geometrical content of these tensors
is made clear when we interpret the four fields s1,*(x) as the contravariant
components of a vierbein system in a curved space. Correspondingly, the
inverses b () are the covariant components of the same tetrad. This identi-
fication prowdes the space-time with a metric given by the symmetric funda-
mental tensor

p =b*ubiy (2.17)

Thus, the Greek indices, which refer to global components, are raised and
lowered with the help of g,,,, whereas the Latin ones are handled with the
local Minkowski tensor 7.

In addition to the metric, an affine connexion rr up> consistent with
the structure of the covariant derivative {2.7), may also be introduced,
namely,

F)\uu }\(bzu v +A kv ].L) (2'18)

Although the metric tensor (2.17) has a vanishing covariant derivative, expres-
sion (2.18) is not a Christoffel connection, because it is not symmetric. Accord-
ing to this geometric interpretation, the quantities RY,; and C"y; are identi-
fied as the local components of the curvature and torsion tensors. The corre-
sponding world tensors are

Rpmw = I‘pcm,u - Fpm/,,u - Fp?\ur)\cv + Fp?\vF?\au (2.19)
Cry,=Tr,, —Th, (2.20)

Therefore, when we impose invariance of a given field with respect to indepen-
dent Poincaré transformations at each space-time point, two gauge fields are
needed. They have the geometric meaning of curvature and torsion of a non-
Riemannian space. Together they represent the gravitational field.

3. Sources of the Gravitational Field

In this section we make a general analysis of the field equations and their
sources, in order to identify the conserved currents that give rise to the curva-
ture and torsion fields. We start from an arbitrary Lagrangian density

g{X> apX: hkus avhkus Aij;l? aVAijIJ} (3'1)
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assumed invariant under the extended Poincaré transformations (2.5). Direct
application of Noether’s theorem gives

3u{[£8", — 3L 10X, W)X — O L |0hi” Wi 5 — 0 L[0AT, AT, ,16x
+(@L/0x u)0x + 0L [ohy” L)8hi” + DL [3AY, )6 47,1 =0
(32)

where, for short, we have replaced inside the brackets the partial derivative
symbol by a comma. Inserting in equation (3.2) the expressions for the
variations given by equations (2.5), (2.8), and (2.9) and taking into account
that £, 8,8, 0,05¢”, e aﬁe‘} ,and 9,3g€” should be considered as inde-
pendent arbitrary functions antisymmetric in # and symmetric in a8, we
obtain

A FyHP =87 (3.3)
F*f=_Ff (3.4)
0,5%;=0 (3.5)
3Gy = —T?, + 3, (F;P4A4%,) (3.6)
G, +GPy = (Fi*f - Fif™) 47, (3.7
9,T",=0 (3.8)
where we have defined
Fy#P = ag/aAif“,p (3.9)

5= L/oX w4Six — QL [WP )P — LK 4)hf
+3[(0Z 04, A, — LA, HYAaK,)

+3[(0ZLoAx, ) A%, — (0L [04%1, ) A% ,] (3.10)
G, = (0 Lo,y (3.11)

T, =ZL8", —(0LI0X )X » — LR WIhi® , — (B L[0AY, YA,
(3.12)

There are two gauge fields F;#? and G*¥,,, whose field equations are (3.3)
and (3.6). Noether’s current §*;; is the conserved quantity associated to the
invariance of the Lagrangian density under rotations of the vierbein, i.e., the
intrinsic spin. Analogously T", is the conserved current originated on the
displacements of the vierbein origin; it thus corresponds to the energy tensor.
The current §*;; creates the field F;;*”, whereas the canonical energy tensor
T*, is only part of the source of the field G*®,; the remaining term,

8, (F;°*A4",), has the form of the divergence of an antisymmetric quantity.
Therefore, the expression

T*, =T, — 3,(F;;P*A",) (3.13)
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is the canonical energy tensor when a total divergence is added to the Lag-
rangian. It satisfies the equation

3, T, =3,T", =0 (3.14)

because the divergence of the second term vanishes identically. This result is
consistent with equations (3.4) and (3.7) that imply

G*, = -G, (3.15)

whence, by virtue of equation (3.6), equation (3.14) obtains.
In the next section, using a quadratic Lagrangian density, we identify the
fields F;;#” and G°#, with the curvature and torsion of space-time.

4. Free Gravitational Lagrangian

From the general theory of gauge fields (Utiyama, 1956), we know that
the free Lagrangian density associated to the extended Poincaré invariance
(2.5) contains the derivatives 47, ,, and k" , only through the covariant
combinations R’j; and C'4;- The close analogy between formulas (2.11) and
(2.16) suggests us that this free Lagrangian should be a quadratic expression in
both tensors. This is not the simplest gauge invariant Lagrangian, however. In
fact, with the curvature scalar R we can build the following Lagrangian den-
sity, linear in the derivatives 47, ,:

~ P
gg = (d&t hku) RZ}ij (41)
When this expression is written in covariant language and use is made of

equations (2.17) and (2.18) it reduces to Palatini’s Lagrangian (1.2). The corre-
sponding equations of motion are given by

jo ER;‘k}'k =0 (42)
C*;=0 4.3)

The first is Einstein’s gravity equation and the second one expresses the
absence of torsion in empty space. Note that both equations are algebraic in
the gauge fields. The fact that we do not obtain differential equations in the
curvature and torsion tensors is a serious objection against Lagrangian (4.1)
in this gauge approach. As pointed out in the Introduction, Palatini’s
Lagrangian is essentially a quadratic form when the gravitational field is iden-
tified with Christoffel’s connexion FRW.

In the light of the previous discussion, we propose to adopt as the free
gravitational Lagrangian, the quadratic scalar density

Ly = S + L= %) (det 1)t x [RURM + ClyC/¥] (4.4)
where £ and £ ¢ stand for the terms quadratic in Riemann’s and Cartan’s

tensors, respectively. From this Lagrangian we can derive explicit expressions
for the gauge fields introduced in Section 3. Writing & for det A", we obtain

Fpi*” =@ L, /047,,)=h 'Ry 4.5)
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(G )P, = (0L fohy” o)? =n71 P (4.6)

Therefore, the gauge fields Fy and G, (associated to the potentials Aiiu and
hy") are identified, up to the factor 2~ , with the curvature R;*” and the
torsion C,%*.

Note that for Palatini’s Lagrangian (4.1), the corresponding gauge fields are

(Fo)i” =h™ (R — h"hi*)
(Gg)aﬁv =0

Insert.ing now equations (4.5) and (4.6) into equations (3.10) and (3.13)
and making use of the equations of motion derived from equations (4.4), we

determine the values of the intrinsic spin and energy densities, which are given
by

(S ¥ij = )iy + (or Wy 4.7)
(Tg* pv = (TR )pv + (TC)pv + ([C)pv (4~8)

with
CEHy=0Le/odyy, =3h7 [CH - G 4.9

(o) = 5«$R [0 =R M (A pRAHP — A pRP) (4.10)
(TRY» = (0 Lr/oh" Y =h ' Ry##RY,, —§55,R i R*Y) (4.11)
()% + (1) =L /o Y + QL /" )iy (4.12)
Ty =h"H(CyPCY, - 348°,C1CPF) (4.13)

(¥ = CuP B sl ¢ — A¥ye) (4.14)

The intrinsic spin of the gravitational field (4.7) naturally decomposes into a
tensor part (4.9), given by the spin of the torsion field, and a pseudotensor
(4.10), which corresponds to the spin of the curvature field. The intrinsic
energy (4.8) splits into three terms: a tensor part (4.11), given by the energy
of the curvature field; another tensor {4.13), and a pseudotensor (4.14), which
correspond to the energy of the torsion field.

We are now in a position to write the equations of motion. From the
Lagrangian density (4.4) and taking into account equations (3.3) and (3.6)
we obtain

3BT RG*Y + h T AjguR™ — BT A1uRY = (Sl (4.15)
W(hTICH) — O B ahy” e ~ A a) = (T o + (Tl (4.16)

We have relegated the pseudotensors to the left-hand side of these equations,
because their role consists in changing the ordinary divergence into a covari-
ant one.



GRAVITATIONAL ENERGY 175

5. Covariant Equations and Gravitational Energy

The equations of motion (4.15) and (4.16) for the curvature and torsion
fields may be cast in covariant language with the help of equations (2.17) and
(2.18). The determinant /4 is easily seen to be equal to (—g) V2 with g =
det(g,,). A straightforward calculation then yields

ROBEY, —3CH ROV —§C ¢y ROPHE = ()P (5.1)
P, —3CH L CPY —3CP e, COe = (TR P + (T (5)

On the left-hand side of these equations, the presence of torsion introduces
two additional terms, which are characteristic of the divergence of an anti-
symmetric tensor density calculated with a nonsymmetric connexion. In fact,
if ol ¥ = — of "M is an antisymmetric tensor density, i.e., if it transforms like
(—2)' 24" where 47 is an antisymmetric tensor, then its divergence is given
by

B = A, — hCH oy A HCPey 51 5:3)

This formula generalizes for non-Riemannian spaces the well-known tensor
structure of the ordinary divergence of an antisymmetric second-order tensor
density.

The new feature we note here at once is the presence of torsion in empty
space. lis source is the sum of the energy tensors of the curvature and torsion
fields. In covariant notation they become

(Tr )B“ zRgmﬁREnW - thgﬁ“REm&REmB G4
(Tef* = Cénﬁc}:nu _ %gﬁﬂc‘s’ny(jzm’ (5.5)

Note the similarity between these expressions with Maxwell’s energy tensor of
electrodynamics. They are quadratic in the fields, symmetric, and traceless. On
the other hand, the source of the curvature field is the torsion spin, which is
given by

(Tl =§(CP — cfery (5.6)

In the particular case when no torsion is present, the field equations (5.1)
and (5.2) reduce to

R =0 (5.7)
(TrF* =0 (5.8)

Equation (5.7) is equivalent to the once contracted Bianchi identities, com-
bined with Einstein’s equation R*” = 0 (Lépez, 1973), and equation (5.8)
is a well-known property of the curvature tensor in an empty (R*” = 0)
Riemannian space-time (Lanczos, 1938). Therefore, in Riemannian spaces
the dynamical gravitational energy vanishes. This implies that a gravitational
wave is characterized by besides the curvature, the torsion of space-time.



176 LOPEZ

References

Carmelli, M. (1972). Annals of Physics, 71, 603.

Eddington, A. S. (1924). The Mathematical Theory of Relativity (Cambridge).
Hayashi, K. (1968). Progress of Theoretical Physics, 39, 494.

Kibble, T. W. (1961). Journal of Mathematical Physics, 2, 219.

Lanczos, C. (1938). Annals of Mathematics, 39, 842.

Lépez, C. A. (1973). Lettere al Nuovo Cimento, 6, 608.

Pauli, W. (1919). Physikalische Zeitschrift, XX.

Utiyama, R. (1956). Physical Review, 101, 1597.

Weber, J. (1961). General Relativity and Gravitational Waves (Interscience, London).
Weyl, H. (1929). Zeitschrift fiir Physik, 56, 330.

Weyl, H. (1931). Grunppentheorie und Quantenmechanik (S. Hirzel, Leipzig).
Yang, C. N.,and Mills, R. L. (1954). Physical Review, 96, 191.



